Main resources
Overview
UncertaintyPlayground provides fast and easy prediction intervals for regression tasks, built on top of PyTorch & GPyTorch. The library implements:
- Sparse & Variational Gaussian Process Regression for Gaussian cases
- Mixed Density Networks for multi-modal distributions
Installation
# Via PyPI
pip install uncertaintyplayground
# Development version
pip install git+https://github.com/unco3892/UncertaintyPlayground.gitExample Usage
from uncertaintyplayground.trainers.svgp_trainer import SparseGPTrainer
from uncertaintyplayground.predplot.svgp_predplot import compare_distributions_svgpr
from uncertaintyplayground.predplot.grid_predplot import plot_results_grid
# Train SVGPR model
trainer = SparseGPTrainer(
X_train, y_train,
num_inducing_points=100,
num_epochs=30
)
trainer.train()
# Visualize predictions
plot_results_grid(
trainer=trainer,
compare_func=compare_distributions_svgpr,
X_test=X_test,
Y_test=y_test,
indices=[900, 500],
ncols=2
)Citation
@misc{azizi2023uncertaintyplayground,
title={UncertaintyPlayground: A Fast and Simplified Python Library for Uncertainty Estimation},
author={Ilia Azizi},
year={2023},
eprint={2310.15281},
archivePrefix={arXiv},
primaryClass={stat.ML}
}