Main resources
Overview
UncertaintyPlayground provides fast and easy prediction intervals for regression tasks, built on top of PyTorch & GPyTorch. The library implements:
- Sparse & Variational Gaussian Process Regression for Gaussian cases
- Mixed Density Networks for multi-modal distributions
Installation
# Via PyPI
pip install uncertaintyplayground
# Development version
+https://github.com/unco3892/UncertaintyPlayground.git pip install git
Example Usage
from uncertaintyplayground.trainers.svgp_trainer import SparseGPTrainer
from uncertaintyplayground.predplot.svgp_predplot import compare_distributions_svgpr
from uncertaintyplayground.predplot.grid_predplot import plot_results_grid
# Train SVGPR model
= SparseGPTrainer(
trainer
X_train, y_train, =100,
num_inducing_points=30
num_epochs
)
trainer.train()
# Visualize predictions
plot_results_grid(=trainer,
trainer=compare_distributions_svgpr,
compare_func=X_test,
X_test=y_test,
Y_test=[900, 500],
indices=2
ncols )
Citation
@misc{azizi2023uncertaintyplayground,
title={UncertaintyPlayground: A Fast and Simplified Python Library for Uncertainty Estimation},
author={Ilia Azizi},
year={2023},
eprint={2310.15281},
archivePrefix={arXiv},
primaryClass={stat.ML}
}